Volume 1, Issue 3 (July 2022)
Authors' Guidelines
Make a Submission
Identification of Pathogenic Fungi in Renal Transplant Patients by Conventional and Molecular Methods
Faheema Jabbar
 Tropical Biological Research Unit, College of Science, University of Baghdad - Iraq
 Corresponding Author
Azhar A.Al-Attraqchi
 Department of Medical Microbiology, College of Medicine, Al-Nahrain University, Baghdad - Iraq
Dina Nabeel Alkhayyat
 Kidney Disease and Transplantation Center / Baghdad Medical City, Baghdad - Iraq
ISSN(e): 2790-296X
ISSN(p): 2957-5826
About the Journal
Editor in Chief:
Prof. Dr. Emad Al-Mulla
BCS is published quarterly
Editorial Office:
Commercial Plot 33 Millennium Plaza, G-15 Markaz, Margalla 02, Islamabad, Pakistan

Opportunistic fungal infections due to the immune- compromised status of renal transplant patients are related to high rates of morbidity and mortality regardless of their minor incidence. Delayed in identification of invasive fungal infections (IFIs), will lead to delayed treatment and results in high mortality in those populations. The study aimed to assess the frequency of invasive fungal infection in kidney transplant recipients by conventional and molecular methods. This study included 100 kidney transplant recipients (KTR) (75 males, and 25 females), collected from the Centre of Kidney Diseases and Transplantation in the Medical City of Baghdad. Blood samples were collected during the period from June 2018 to April 2019. Twenty one out of 100 renal-transplanted patients were infected with pathogenic fungi, four of the patients were females and 17 were males. There is an observation of a high incidence of fungemia in patients with the abnormal value of blood urea according to PCR and culture results. Referring to fungal isolates the most prevalent was Saccharomyces cerevisiae, which account for 19 isolates out of 21 the other two isolates were Zygosaccharomyces rouxii and Aspergillus flavus. The results of the current study show significant correlation between PCR and culture methods at (P<0.0009).

  1. Angebault, C., Payen, M., Woerther, P. L., Rodriguez, C., & Botterel, F. (2020). Combined bacterial and fungal targeted amplicon sequencing of respiratory samples: Does the DNA extraction method matter? PLoS ONE, 15(4), 1–17.
  2. Azab, M. M., Taleb, A. F. A., Mohamed, N. A. E., & Omran, F. H. (2015). Rapid Diagnosis of Invasive Fungal Infections. International Journal of Current Microbiology and Applied Sciences,4,(11),470-486.
  3. Badiee, P., & Alborzi, A. (2011). Invasive fungal infections in renal transplant recipients. Experimental and Clinical Transplantation: Official Journal of the Middle East Society for Organ Transplantation, 9(6), 355-362.
  4. Badiee, P., & Hashemizadeh, Z. (2014). Opportunistic invasive fungal infections: Diagnosis & clinical management. Indian Journal of Medical Research, 139(2), 195–204.
  5. Badotti, F., De Oliveira, F. S., Garcia, C. F., Vaz, A. B. M., Fonseca, P. L. C., Nahum, L. A., Oliveira, G., & Góes-Neto, A. (2017). Effectiveness of ITS and sub-regions as DNA barcode markers for the identification of Basidiomycota (Fungi). BMC Microbiology, 17(1).
  6. Baškova, L., Landlinger, C., Preuner, S., & Lion, T. (2007). The Pan-AC assay: a single-reaction real-time PCR test for quantitative detection of a broad range of Aspergillus and Candida species. Journal of medical microbiology, 56(9), 1167-1173.
  7. Bengtsson-Palme, J., Ryberg, M., Hartmann, M., Branco, S., Wang, Z., Godhe, A., De Wit, P., Sánchez-García, M., Ebersberger, I., de Sousa, F., Amend, A., Jumpponen, A., Unterseher, M., Kristiansson, E., Abarenkov, K., Bertrand, Y. J. K., Sanli, K., Eriksson, K. M., Vik, U., … Nilsson, R. H. (2013). Improved software detection and extraction of ITS1 and ITS2 from ribosomal ITS sequences of fungi and other eukaryotes for analysis of environmental sequencing data. Methods in Ecology and Evolution, 4(10), 914–919.
  8. Breathnach, A., & Evans, J. (1995). Growth and detection of filamentous fungi in the BacT/Alert blood culture system. Journal of Clinical Pathology, 48(7), 670-672.
  9. Brown, G. D., Denning, D. W., Gow, N. A., Levitz, S. M., Netea, M. G., & White, T. C. (2012). Hidden killers: human fungal infections. Science Translational Medicine, 4(165), 165rv13-165rv13.
  10. Einollahi, B., Lessan-Pezeshki, M., Pourfarziani, V., Nemati, E., Nafar, M., Pour-Reza-Gholi, F., ... & Aslani, J. (2008). IInvasive fungal infections following renal transplantation: A review of 2410 recipients. Annals of Transplantation, 13(4), 55-58.
  11. Ezzatzadegan, S., Chen, S., & Chapman, J. R. (2012). Invasive fungal infections after renal transplantation. International Journal of Organ Transplantation Medicine, 3(1), 18–25.
  12. Garner, C. D., Starr, J. K., McDonough, P. L., & Altier, C. (2010). Molecular identification of veterinary yeast isolates by use of sequence-based analysis of the D1/D2 region of the large ribosomal subunit. Journal of Clinical Microbiology, 48(6), 2140-2146.
  13. Gorton, R. L., Jones, G. L., Kibbler, C. C., & Collier, S. (2013). Candida nivariensis isolated from a renal transplant patient with persistent candiduria—molecular identification using ITS PCR and MALDI-TOF. Medical Mycology Case Reports, 2, 156-158.
  14. Gosiewski, T., Jurkiewicz-Badacz, D., Sroka, A., Brzychczy-Włoch, M., & Bulanda, M. (2014). A novel, nested, multiplex, real-time PCR for detection of bacteria and fungi in blood. BMC Microbiology, 14(1), 1–7.
  15. Heeger, F., Wurzbacher, C., Bourne, E. C., Mazzoni, C. J., & Monaghan, M. T. (2019). Combining the 5.8S and ITS2 gene regions to improve classification of fungi. BioRxiv, 1–20.
  16. Khoury, J. A., & Brennan, D. C. (2005). Infectious complications in kidney transplant recipients: review of the literature. Saudi Journal of Kidney Diseases and Transplantation, 16(4), 453.
  17. Kirn, T. J., & Weinstein, M. P. (2013). Update on blood cultures: how to obtain, process, report, and interpret. Clinical Microbiology and Infection, 19(6), 513-520.
  18. Kõljalg, U., Nilsson, R. H., Abarenkov, K., Tedersoo, L., Taylor, A. F. S., Bahram, M., Bates, S. T., Bruns, T. D., Bengtsson-Palme, J., Callaghan, T. M., Douglas, B., Drenkhan, T., Eberhardt, U., Dueñas, M., Grebenc, T., Griffith, G. W., Hartmann, M., Kirk, P. M., Kohout, P., … Larsson, K. H. (2013). Towards a unified paradigm for sequence-based identification of fungi. Molecular Ecology, 22(21), 5271–5277.
  19. Landlinger, C., Preuner, S., Bašková, L., Van Grotel, M., Hartwig, N. G., Dworzak, M., Mann, G., Attarbaschi, A., Kager, L., Peters, C., Matthes-Martin, S., Lawitschka, A., Van Den Heuvel-Eibrink, M. M., & Lion, T. (2010). Diagnosis of invasive fungal infections by a real-time panfungal PCR assay in immunocompromised pediatric patients. Leukemia, 24(12), 2032–2038.
  20. Mbareche, H., Veillette, M., Bilodeau, G., & Duchaine, C. (2020). Comparison of the performance of ITS1 and ITS2 as barcodes in amplicon-based sequencing of bioaerosols. PeerJ 8:e8523.
  21. Mello, A., Napoli, C., Murat, C., Morin, E., Marceddu, G., & Bonfante, P. (2011). ITS-1 versus ITS-2 pyrosequencing: A comparison of fungal populations in truffle grounds. Mycologia, 103(6), 1184–1193.
  22. Mohanty, N. K., & Sahu, S. (2014). Fusarium solani infection in a kidney transplant recipient. Indian Journal of Nephrology, 24(5), 312-314.
  23. Pontes, A., Hutzler, M., Brito, P. H., & Sampaio, J. P. (2020). Revisiting the taxonomic synonyms and populations of Saccharomyces cerevisiae—phylogeny, phenotypes, ecology and domestication. Microorganisms, 8(6), 903.
  24. Sanchez, A., & Larsen, R. (2007). Fungal infections in solid organ transplantation. Current Opinion in Organ Transplantation, 12(6), 579-584.
  25. Tobon, A. M., Arango, M., Fernández, D., & Restrepo, A. (2003). Mucormycosis (zygomycosis) in a heart-kidney transplant recipient: Recovery after posaconazole therapy. Clinical Infectious Diseases, 36(11), 1488–1491.
  26. Tolkoff-Rubin, N. E., & Rubin, R. H. (1992). Opportunistic fungal and bacterial infection in the renal transplant recipient. Journal of the American Society of Nephrology, 2(12 SUPPL.).
  27. Vaidyanathan, K. (2016). Textbook of Biochemistry for Medical Students. Textbook of Biochemistry for Medical Students, August 2018.
  28. Vilgalys, R., & Hester, M. (1990). Rapid genetic identification and mapping of enzymatically amplified ribosomal DNA from several Cryptococcus species. Journal of bacteriology, 172(8), 4238-4246.
  29. Yao, H., Song, J., Liu, C., Luo, K., Han, J., Li, Y., Pang, X., Xu, H., Zhu, Y., Xiao, P., & Chen, S. (2010). Use of ITS2 region as the universal DNA barcode for plants and animals. PLoS ONE, 5(10).
  30. Zaher EHF, M. A. (2015). Why nuclear ribosomal internal transcribed spacer (ITS) has been Selected as the DNA Barcode for Fungi? Advancements in Genetic Engineering, 04(02).

No citation yet. Please check again later.
How to Cite:
Jabbar, F., A.Al-Attraqchi, A., & Alkhayyat, D. N. (2022). Identification of Pathogenic Fungi in Renal Transplant Patients by Conventional and Molecular Methods. Biomedicine and Chemical Sciences1(3), 126–131.
Publisher’s Note:
International Research and Publishing Academy (iRAPA) stands neutral with regard to jurisdictional claims in the published maps and institutional affiliations.
© 2022 Biomedicine and Chemical Sciences published by International Research and Publishing Academy (iRAPA) - Pakistan Co-published by Al-Furat Al-Awsat Technical University - Iraq
This is an Open Access article published under the Creative Commons Attribution 4.0 International (CC BY 4.0) (
Creative Commons Attribution (CC BY): lets others distribute and copy the article, to create extracts, abstracts, and other revised versions, adaptations or derivative works of or from an article (such as a translation), to include in a collective work (such as an anthology), to text or data mine the article, even for commercial purposes, as long as they credit the author(s), do not represent the author as endorsing their adaptation of the article, and do not modify the article in such a way as to damage the author's honour or reputation.