cover_issue_7_en_US-1

Volume 1, Issue 3 (July 2022)
Authors' Guidelines
Make a Submission
New Homo and Heterobinuclear Macrocyclic Complexes Bearing Isatine Structural Characterization, Thermal Study and DFT Calculations
Anaam Rasheed
 Department of Chemistry, College of Science, Mustanseriyah University, Baghdad - Iraq
Senan Albayati
 Department of Chemistry, College of Science, Mustanseriyah University, Baghdad - Iraq
Sarab Alazawi
 Department of Chemistry, College of Science, Mustanseriyah University, Baghdad - Iraq
Enas Zuhair
 Department of Chemistry, College of Science, Mustanseriyah University, Baghdad - Iraq
Mudeer Merza
 Department of Chemistry, College of Science, Mustanseriyah University, Baghdad - Iraq
Khalil Abid
 Department of Chemistry, College of Science, University of Basrah - Iraq
 abidk56@yahoo.com
 Corresponding Author
ISSN(e): 2790-296X
ISSN(p): 2957-5826
About the Journal
Editor in Chief:
Prof. Dr. Emad Al-Mulla
 
Frequency:
BCS is published quarterly
 
Publisher:
 
Co-Publisher:
 
Editorial Office:
Commercial Plot 33 Millennium Plaza, G-15 Markaz, Margalla 02, Islamabad, Pakistan

A new metal-free macrocyclic Schiff base ligand bearing two metal cavities incorporated with two sets of N3O2 donor atoms derived from 2, 6-diaminopyridine and isatine was synthesized. The new ligand was used to prepare homo and hetero binuclear macrocyclic Schiff base complexes with Ni (II), Cu (II), ZrO (II) and Ba (II) metal ions. The ligand and metal complexes were characterized using Fourier transform infrared (FT-IR), UV–vis, mass spectroscopy, elemental analysis (CHN), thermo gravimetric analysis (TGA), magnetic susceptibility, and molar conductivity measurements. The DFT calculations using the B3LYP functional method have been applied to obtain the geometry and electronic properties of the ligand and its metal complexes to support the experimental data. To describe the reactivity of the title molecules, the HOMO and LUMO levels and Mulliken atomic charges were determined.

  1. Alkam, H. H., Atiyah, E. M., Majeed, N. M., & Alwan, W. M. (2021). Cupper (ii) and mercury (ii) complexes with schiff base ligands from benzidine with isatin and benzoine: synthesis, spectral characterization, thermal studies and biological activities. Systematic Reviews in Pharmacy, 12(1).
  2. Archibald, S. J. (2009). Coordination chemistry of macrocyclic ligands. Annual Reports Section" A"(Inorganic Chemistry), 105, 297-322. https://doi.org/10.1039/B818281G
  3. Arshad, M., Jadoon, M., Iqbal, Z., Fatima, M., Ali, M., Ayub, K., ... & Mahmood, T. (2017). Synthesis, molecular structure, quantum mechanical studies and urease inhibition assay of two new isatin derived sulfonylhydrazides. Journal of Molecular Structure, 1133, 80-89. https://doi.org/10.1016/j.molstruc.2016.11.065
  4. Beckmann, U., & Brooker, S. (2003). Cobalt (II) complexes of pyridazine or triazole containing ligands: spin-state control. Coordination chemistry reviews, 245(1-2), 17-29. https://doi.org/10.1016/S0010-8545(03)00030-4
  5. Bitu, M. N. A., Hossain, M. S., Zahid, A. A. S. M., Zakaria, C. M., & Kudrat-E-Zahan, M. (2019). Anti-pathogenic activity of cu (II) complexes incorporating Schiff bases: a short review. American Journal of Heterocyclic Chemistry, 5(1), 11-23. https://doi.:10.11648/j.ajhc.20190501.14
  6. Borisova, N. E., Reshetova, M. D., & Ustynyuk, Y. A. (2004). Binuclear and polynuclear transition metal complexes with macrocyclic ligands. 3. New polydentate macrocyclic ligands in reactions of 4-alkyl-2, 6-diformylphenols with 1, 2-diaminobenzenes. Russian Chemical Bulletin, 53(1), 181-188. https://doi.org/10.1023/B:RUCB.0000024848.03470.25
  7. Bottei, R. S., & Quane, D. (1964). Preparation and thermal stability of some divalent metal chelate polymers of β-hydronaphthazarin. Journal of Inorganic and Nuclear Chemistry, 26(11), 1919-1925. https://doi.org/10.1016/0022-1902(64)80017-8
  8. Ceramella, J., Iacopetta, D., Catalano, A., Cirillo, F., Lappano, R., & Sinicropi, M. S. (2022). A review on the antimicrobial activity of schiff bases: Data collection and recent studies. Antibiotics, 11(2), 191. https://doi.org/10.3390/antibiotics11020191
  9. Chandra, S., & Kumar, R. (2004). Synthesis and spectral studies on mononuclear complexes of chromium (III) and manganese (II) with 12-membered tetradentate N2O2, N2S2 and N4 donor macrocyclic ligands. Transition Metal Chemistry, 29(3), 269-275. https://doi.org/10.1023/B:TMCH.0000020359.84853.72
  10. Chandra, S., Gupta, R., Gupta, N., & Bawa, S. S. (2006). Biologically relevant macrocyclic complexes of copper spectral, magnetic, thermal and antibacterial approach. Transition Metal Chemistry, 31(2), 147-151. https://doi.org/10.1007/s11243-005-6194-5
  11. Chu, Z., Huang, W., Wang, L., & Gou, S. (2008). Chiral 27-membered [3+ 3] Schiff-base macrocycles and their reactivity with first-row transition metal ions. Polyhedron, 27(3), 1079-1092. https://doi.org/10.1016/j.poly.2007.12.003
  12. Cifelli, M., Domenici, V., & Veracini, C. A. (2013). Recent advancements in understanding thermotropic liquid crystal structure and dynamics by means of NMR spectroscopy. Current Opinion in Colloid & Interface Science, 18(3), 190-200. https://doi.org/10.1016/j.cocis.2013.03.003
  13. Dileepan, A. B., Prakash, T. D., Kumar, A. G., Rajam, P. S., Dhayabaran, V. V., & Rajaram, R. (2018). Isatin based macrocyclic Schiff base ligands as novel candidates for antimicrobial and antioxidant drug design: In vitro DNA binding and biological studies. Journal of Photochemistry and Photobiology B: Biology, 183, 191-200. https://doi.org/10.1016/j.jphotobiol.2018.04.029
  14. Gliemann, G. A. B. P. (1985). ABP Lever: Inorganic Electronic Spectroscopy, Vol. 33 aus: Studies in Physical and Theoretical Chemistry, Elsevier, Amsterdam, Oxford, New York, Tokio 1984. 863 Seiten, Preis: $113, 50. https://doi.org/10.1002/bbpc.19850890122
  15. Gull, P., Babgi, B. A., & Hashmi, A. A. (2017). Synthesis of Ni (II), Cu (II) and Co (II) complexes with new macrocyclic Schiff-base ligand containing dihydrazide moiety: Spectroscopic, structural, antimicrobial and antioxidant properties. Microbial Pathogenesis, 110, 444-449. https://doi.org/10.1016/j.micpath.2017.07.030
  16. Ikotun, A. A., Oladimeji, A. O., & Oluranti, O. O. (2019). Synthesis, Physicochemical and Antimicrobial Properties of Co (II) and Ni (II) metal complexes of the Schiff base of isatin and 4-methylaniline. Journal of Applied Sciences and Environmental Management, 23(11), 1957-1962. https://dx.doi.org/10.4314/jasem.v23i11.8
  17. Kilpin, K. J., Henderson, W., & Nicholson, B. K. (2007). Synthesis, characterisation and biological activity of cycloaurated organogold (III) complexes with imidate ligands. Polyhedron, 26(1), 204-213. https://doi.org/10.1016/j.poly.2006.08.009
  18. Ma, W., Tian, Y. P., Zhang, S. Y., Wu, J. Y., Fun, H. K., & Chantrapromma, S. (2006). Synthesis and characterization of 1, 8-bis (ferrocenylmethyl)-5, 5, 12, 12, 14-hexamethyl-1, 4, 8, 11-tetraazacyclotetradecane, a macrocyclic ligand and its complexes. Transition Metal Chemistry, 31(1), 97-102. https://doi.org/10.1007/s11243-005-6336-9
  19. Mohapatra, R. K., Ghosh, S., Naik, P., Mishra, S. K., Mahapatra, A., & Dash, D. C. (2012). Synthesis and Characterization of Homo Binuclear Macrocyclic Complexes of UO 2 (VI), Th (IV), ZrO (IV) and VO (IV) with Schiff-Bases Derived from Ethylene diamine/Orthophenylene Diamine, Benzilmonohydrazone and Acetyl Acetone. Journal of the Korean Chemical Society, 56(1), 62-67. https://doi.org/10.5012/jkcs.2012.56.1.062
  20. Nakamoto, K. (2009). Infrared and Raman spectra of inorganic and coordination compounds, part B: applications in coordination, organometallic, and bioinorganic chemistry. John Wiley & Sons. https://doi.org/10.1002/0470027320.s4104
  21. Nockemann, P., Thijs, B., Postelmans, N., Van Hecke, K., Van Meervelt, L., & Binnemans, K. (2006). Anionic rare-earth thiocyanate complexes as building blocks for low-melting metal-containing ionic liquids. Journal of the American Chemical Society, 128(42), 13658-13659. https://doi.org/10.1021/ja0640391
  22. Racles, C., Silion, M., Arvinte, A., Iacob, M., & Cazacu, M. (2013). Synthesis and characterization of poly (siloxane–azomethine) iron (III) coordination compounds. Designed Monomers and Polymers, 16(5), 425-435. https://doi.org/10.1080/15685551.2012.747161
  23. Sherzaman, S., Ahmed, M. N., Khan, B. A., Mahmood, T., Ayub, K., & Tahir, M. N. (2017). Thiobiuret based Ni (II) and Co (III) complexes: synthesis, molecular structures and DFT studies. Journal of Molecular Structure, 1148, 388-396. https://doi.org/10.1016/j.molstruc.2017.07.054
  24. Silverstein, R. M., & Bassler, G. C. (1962). Spectrometric identification of organic compounds. Journal of Chemical Education, 39(11), 546. https://doi.org/10.1021/ed039p546
  25. Tušek-Božić, L., Marotta, E., & Traldi, P. (2007). Efficient solid-state microwave-promoted complexation of a mixed dioxa-diaza macrocycle with an alkali salt. Synthesis of a sodium ethyl 4-benzeneazophosphonate complex. Polyhedron, 26(8), 1663-1668. https://doi.org/10.1016/j.poly.2006.12.012
  26. Venkatesh, R., & Geetha, K. (2015). Synthesis and Spectroscopic Investigation of Novel Nickel (II) Complexes from Pentadentate Schiff Base Ligand. SOJ Materials Science & Engineering, 3(2), 1-5. http://dx.doi.org/10.15226/sojmse.2015.00121


No citation yet. Please check again later.
How to Cite:
Rasheed, A., Albayati, S., Alazawi, S., Zuhair, E., Merza, M., & Abid, K. (2022). New Homo and Heterobinuclear Macrocyclic Complexes Bearing Isatine: Structural Characterization, Thermal Study and DFT Calculations. Biomedicine and Chemical Sciences1(3), 138–146. https://doi.org/10.48112/bcs.v1i3.187
 
Publisher’s Note:
International Research and Publishing Academy (iRAPA) stands neutral with regard to jurisdictional claims in the published maps and institutional affiliations.
 
Copyright:
© 2022 Biomedicine and Chemical Sciences published by International Research and Publishing Academy (iRAPA) - Pakistan Co-published by Al-Furat Al-Awsat Technical University - Iraq
 
This is an Open Access article published under the Creative Commons Attribution 4.0 International (CC BY 4.0) (https://creativecommons.org/licenses/by/4.0/)
Creative Commons Attribution (CC BY): lets others distribute and copy the article, to create extracts, abstracts, and other revised versions, adaptations or derivative works of or from an article (such as a translation), to include in a collective work (such as an anthology), to text or data mine the article, even for commercial purposes, as long as they credit the author(s), do not represent the author as endorsing their adaptation of the article, and do not modify the article in such a way as to damage the author's honour or reputation.