cover_issue_7_en_US-1-1

Volume 1, Issue 4 (July 2022)

Authors' Guidelines
PDF
Make a Submission
Other Format
Recent Developments of Stetter Reaction: A Brief Review
Jawad Kadhum Shneine
 Department of Chemistry, College of Science, Al-Nahrain University, Baghdad - Iraq
 jawad.kadem@nahrainuniv.edu.iq
 Corresponding Author
Shayma Muhsen Ahmad
 Department of Chemistry, College of Science, Al-Nahrain University, Baghdad - Iraq
Dhea Sh. Zagheer
 Department of Chemistry, College of Science, Al-Nahrain University, Baghdad - Iraq
ISSN(e): 2790-296X
ISSN(p): 2957-5826
About the Journal
Editor in Chief:
Prof. Dr. Emad Al-Mulla
 
Frequency:
BCS is published quarterly
 
Publisher:
 
Co-Publisher:
 
Editorial Office:
Commercial Plot 33 Millennium Plaza, G-15 Markaz, Margalla 02, Islamabad, Pakistan

In this short review definition, mechanism, and recent developments of the Stetter reaction, in the period last ten years from 2011 to 2021 are presented. This reaction comprises N-heterocyclic carbene (NHC)-catalyzed umpolung of aldehydes followed by their capturing with activated carbon-carbon double bonds (Michael acceptors). This work includes also progresses in the inter-molecular and intra-molecular versions and enantioselective transformations. Underscoring the recent advances in the applications of Stetter reaction in the synthesis of various heterocyclic systems and total synthesis of natural products have been also introduced.

  1. Barman, D., Ghosh, T., Show, K., Debnath, S., Ghosh, T., & Maiti, D. K. (2021). NHC-Mediated Stetter-Aldol and Imino-Stetter-Aldol Domino Cyclization to Naphthalen-1 (2 H)-ones and Isoquinolines. Organic Letters, 23(6), 2178-2182. https://doi.org/10.1021/acs.orglett.1c00337
  2. Biju, A. T., Kuhl, N., & Glorius, F. (2011). Extending NHC-catalysis: coupling aldehydes with unconventional reaction partners. Accounts of chemical research, 44(11), 1182-1195. https://doi.org/10.1021/ar2000716
  3. Breslow, R. (1958). On the mechanism of thiamine action. IV. 1 Evidence from studies on model systems. Journal of the American Chemical Society, 80(14), 3719-3726. https://doi.org/10.1021/ja01547a064
  4. Bugaut, X., & Glorius, F. (2012). Organocatalytic umpolung: N-heterocyclic carbenes and beyond. Chemical Society Reviews, 41(9), 3511-3522. https://doi.org/10.1039/C2CS15333E
  5. Büttner, H., Steinbauer, J., & Werner, T. (2015). Synthesis of cyclic carbonates from epoxides and carbon dioxide by using bifunctional one‐component phosphorus‐based organocatalysts. ChemSusChem, 8(16), 2655-2669. https://doi.org/10.1002/cssc.201500612
  6. Chen, X. Y., Gao, Z. H., & Ye, S. (2020). Bifunctional N-heterocyclic carbenes derived from L-pyroglutamic acid and their applications in enantioselective organocatalysis. Accounts of chemical research, 53(3), 690-702. https://doi.org/10.1021/acs.accounts.9b00635
  7. DiRocco, D. A., Noey, E. L., Houk, K. N., & Rovis, T. (2012). Catalytic asymmetric intermolecular stetter reactions of enolizable aldehydes with nitrostyrenes: Computational study provides insight into the success of the catalyst. Angewandte Chemie, 124(10), 2441-2444. https://doi.org/10.1002/ange.201107597
  8. Draskovits, M., Kalaus, H., Stanetty, C., & Mihovilovic, M. D. (2019). Intercepted dehomologation of aldoses by N-heterocyclic carbene catalysis–a novel transformation in carbohydrate chemistry. Chemical Communications, 55(81), 12144-12147. https://doi.org/10.1039/C9CC05906G
  9. Draskovits, M., Stanetty, C., Baxendale, I. R., & Mihovilovic, M. D. (2018). Indium-and Zinc-Mediated Acyloxyallylation of Protected and Unprotected Aldotetroses – Revealing a Pronounced Diastereodivergence and a Fundamental Difference in the Performance of the Mediating Metal. The journal of organic chemistry, 83(5), 2647-2659. https://doi.org/10.1021/acs.joc.7b03063
  10. Dvorak, C. A., & Rawal, V. H. (1998). Catalysis of benzoin condensation by conformationally-restricted chiral bicyclic thiazolium salts. Tetrahedron letters, 39(19), 2925-2928. https://doi.org/10.1016/S0040-4039(98)00439-0
  11. Ema, T., Nanjo, Y., Shiratori, S., Terao, Y., & Kimura, R. (2016). Solvent-free benzoin and Stetter reactions with a small amount of NHC catalyst in the liquid or semisolid state. Organic letters, 18(21), 5764-5767. https://doi.org/10.1021/acs.orglett.6b03115
  12. Enders, D., & Balensiefer, T. (2004). Nucleophilic carbenes in asymmetric organocatalysis. Accounts of chemical research, 37(8), 534-541. https://doi.org/10.1021/ar030050j
  13. Enders, D., & Kallfass, U. (2002). An efficient nucleophilic carbene catalyst for the asymmetric benzoin condensation. Angewandte Chemie International Edition, 41(10), 1743-1745. https://doi.org/10.1002/1521-3773(20020517)41:10%3C1743::AID-ANIE1743%3E3.0.CO;2-Q
  14. Enders, D., Breuer, K., Runsink, J., & Teles, J. H. (1996). The first asymmetric intramolecular Stetter reaction. Preliminary communication. Helvetica chimica acta, 79(7), 1899-1902. https://doi.org/10.1002/hlca.19960790712
  15. Enders, D., Han, J., & Henseler, A. (2008). Asymmetric intermolecular Stetter reactions catalyzed by a novel triazolium derived N-heterocyclic carbene. Chemical communications, (34), 3989-3991. https://doi.org/10.1039/B809913H
  16. Fang, X., Chen, X., Lv, H., & Chi, Y. R. (2011). Enantioselective Stetter Reactions of Enals and Modified Chalcones Catalyzed by N‐Heterocyclic Carbenes. Angewandte Chemie, 123(49), 11986-11989. https://doi.org/10.1002/ange.201105812
  17. Fleige, M., & Glorius, F. (2017). α‐Unsubstituted Pyrroles by NHC‐Catalyzed Three‐Component Coupling: Direct Synthesis of a Versatile Atorvastatin Derivative. Chemistry–A European Journal, 23(45), 10773-10776. https://doi.org/10.1002/chem.201703008
  18. Garapati, V. K. R., & Gravel, M. (2018). Oxazolium Salts as Organocatalysts for the Umpolung of Aldehydes. Organic letters, 20(20), 6372-6375. https://doi.org/10.1021/acs.orglett.8b02636
  19. Ghosh, A., Patra, A., Mukherjee, S., & Biju, A. T. (2018). Synthesis of 2-aryl naphthoquinones by the cross-dehydrogenative coupling involving an NHC-catalyzed endo-stetter reaction. The Journal of Organic Chemistry, 84(2), 1103-1110. https://doi.org/10.1021/acs.joc.8b02931
  20. Ghosh, A., Patra, A., Mukherjee, S., & Biju, A. T. (2018). Synthesis of 2-aryl naphthoquinones by the cross-dehydrogenative coupling involving an NHC-catalyzed endo-stetter reaction. The Journal of Organic Chemistry, 84(2), 1103-1110. https://doi.org/10.1021/acs.joc.8b02931
  21. Harnying, W., Sudkaow, P., Biswas, A., & Berkessel, A. (2021). N‐Heterocyclic Carbene/Carboxylic Acid Co‐Catalysis Enables Oxidative Esterification of Demanding Aldehydes/Enals, at Low Catalyst Loading. Angewandte Chemie International Edition, 60(36), 19631-19636. https://doi.org/10.1002/anie.202104712
  22. Hinkamp, L., & Schäfer, H. J. (2015). Allylic oxidation of methyl 10‐undecenoate and nucleophilic additions to methyl 9‐oxo‐10‐undecenoate. European Journal of Lipid Science and Technology, 117(2), 255-265. https://doi.org/10.1002/ejlt.201400238
  23. Jousseaume, T., Wurz, N. E., & Glorius, F. (2011). Highly enantioselective synthesis of α‐amino acid derivatives by an NHC‐catalyzed intermolecular Stetter reaction. Angewandte Chemie International Edition, 50(6), 1410-1414. https://doi.org/10.1002/anie.201006548
  24. Kerr, M. S., & Rovis, T. (2004). Enantioselective synthesis of quaternary stereocenters via a catalytic asymmetric Stetter reaction. Journal of the American Chemical Society, 126(29), 8876-8877. https://doi.org/10.1021/ja047644h
  25. Li, Y., Geng, L., Song, Z., & Zhang, Z. (2022). A DFT study of NHC-catalyzed reactions between 2-bromo-2-enals and acylhydrazones: mechanisms, and chemo-and stereoselectivities. New Journal of Chemistry, 46 (19), 9146-9154. https://doi.org/10.1039/D2NJ01078J
  26. Liu, F., Bugaut, X., Schedler, M., Fröhlich, R., & Glorius, F. (2011). Designing N‐Heterocyclic Carbenes: Simultaneous Enhancement of Reactivity and Enantioselectivity in the Asymmetric Hydroacylation of Cyclopropenes. Angewandte Chemie International Edition, 50(52), 12626-12630. https://doi.org/10.1002/anie.201106155
  27. MináKim, S., YuáJin, M., JináKim, M., SugáKim, Y., EuiáSong, C., HyunáRyu, D., & WoonáYang, J. (2011). N-Heterocyclic carbene-catalysed intermolecular Stetter reactions of acetaldehyde. Organic & Biomolecular Chemistry, 9(7), 2069-2071. https://doi.org/10.1039/C0OB01178A
  28. Mitra, R. N., Show, K., Barman, D., Sarkar, S., & Maiti, D. K. (2018). NHC-catalyzed dual Stetter reaction: a mild cascade annulation for the syntheses of naphthoquinones, isoflavanones, and sugar-based chiral analogues. The Journal of Organic Chemistry, 84(1), 42-52. https://doi.org/10.1021/acs.joc.8b01503
  29. Moore, J. L., Silvestri, A. P., de Alaniz, J. R., DiRocco, D. A., & Rovis, T. (2011). Mechanistic investigation of the enantioselective intramolecular Stetter reaction: Proton transfer is the first irreversible step. Organic letters, 13(7), 1742-1745. https://doi.org/10.1021/ol200256a
  30. Moore, J. L., Silvestri, A. P., de Alaniz, J. R., DiRocco, D. A., & Rovis, T. (2011). Mechanistic investigation of the enantioselective intramolecular Stetter reaction: Proton transfer is the first irreversible step. Organic letters, 13(7), 1742-1745.
  31. Murry, J. A., Frantz, D. E., Soheili, A., Tillyer, R., Grabowski, E. J., & Reider, P. J. (2001). Synthesis of α-amido ketones via organic catalysis: thiazolium-catalyzed cross-coupling of aldehydes with acylimines. Journal of the American Chemical Society, 123(39), 9696-9697. https://doi.org/10.1021/ja0165943
  32. Patra, A., Bhunia, A., & Biju, A. T. (2014). Facile synthesis of γ-ketophosphonates by an intermolecular Stetter reaction onto vinylphosphonates. Organic letters, 16(18), 4798-4801. https://doi.org/10.1021/ol502262d
  33. Qi, J., Xie, X., He, J., Zhang, L., Ma, D., & She, X. (2011). N-Heterocyclic carbene-catalyzed cascade epoxide-opening and lactonization reaction for the synthesis of dihydropyrone derivatives. Organic & Biomolecular Chemistry, 9(17), 5948-5950. https://doi.org/10.1039/C1OB05854A
  34. Ranjbari, M. A., Tavakol, H., & Manoukian, M. (2021). Regioselective and solvent-free arylation of β-nitrostyrenes with mono-and dialkyl anilines. Research on Chemical Intermediates, 47(2), 709-721. https://doi.org/10.1007/s11164-020-04294-6
  35. Rezazadeh Khalkhali, M., Wilde, M. M., & Gravel, M. (2020). Enantioselective Stetter reactions catalyzed by bis (amino) cyclopropenylidenes: Important role for water as an additive. Organic Letters, 23(1), 155-159. https://doi.org/10.1021/acs.orglett.0c03879
  36. Rong, Z. Q., Li, Y., Yang, G. Q., & You, S. L. (2011). D-camphor-derived triazolium salts for enantioselective intramolecular Stetter reactions. Synlett, 2011(07), 1033-1037. https://doi.org/10.1055/s-0030-1259732
  37. Shen, G., Liu, H., Chen, J., He, Z., Zhou, Y., Wang, L., ... & Fan, B. (2021). Zinc salt-catalyzed reduction of α-aryl imino esters, diketones and phenylacetylenes with water as hydrogen source. Organic & Biomolecular Chemistry, 19(16), 3601-3610. https://doi.org/10.1039/D1OB00155H
  38. Stetter, H., & Schreckenberg, M. (1973). A new method for addition of aldehydes to activated double bonds. Angewandte Chemie International Edition in English, 12(1), 81-81. https://doi.org/10.1002/anie.197300811
  39. Steward, K. M., Gentry, E. C., & Johnson, J. S. (2012). Dynamic kinetic resolution of α-keto esters via asymmetric transfer hydrogenation. Journal of the American Chemical Society, 134(17), 7329-7332. https://doi.org/10.1021/ja3027136
  40. Trost, B. M., Shuey, C. D., & DiNinno Jr, F. (1979). A stereocontrolled total synthesis of (.+-.)-hirsutic acid C. Journal of the American Chemical Society, 101(5), 1284-1285. https://doi.org/10.1021/ja00499a043
  41. Um, J. M., DiRocco, D. A., Noey, E. L., Rovis, T., & Houk, K. N. (2011). Quantum mechanical investigation of the effect of catalyst fluorination in the intermolecular asymmetric stetter reaction. Journal of the American Chemical Society, 133(29), 11249-11254. https://doi.org/10.1021/ja202444g
  42. Wang, Y., Liu, Y., Gong, K., Zhang, H., Lan, Y., & Wei, D. (2021). Theoretical study of the NHC-catalyzed C–S bond cleavage and reconstruction reaction: mechanism, stereoselectivity, and role of catalysts. Organic Chemistry Frontiers, 8(19), 5352-5360. https://doi.org/10.1039/D1QO00706H
  43. Zarganes-Tzitzikas, T., Neochoritis, C. G., & Dömling, A. (2019). Atorvastatin (lipitor) by MCR. ACS Medicinal Chemistry Letters, 10(3), 389-392. https://doi.org/10.1021/acsmedchemlett.8b00579
  44. Zhang, J., Xing, C., Tiwari, B., & Chi, Y. R. (2013). Catalytic activation of carbohydrates as formaldehyde equivalents for Stetter reaction with enones. Journal of the American Chemical Society, 135(22), 8113-8116. https://doi.org/10.1021/ja401511r
  45. Zhou, Q., Bao, Y., & Yan, G. (2022). 2‐Bromo‐3, 3, 3‐Trifluoropropene: A Versatile Reagent for the Synthesis of Fluorinated Compounds. Advanced Synthesis and Catalysis, 364(8), 1371-1387. https://doi.org/10.1002/adsc.202200023
  46. Zhu, J., Moreno, I., Quinn, P., Yufit, D. S., Song, L., Young, C. M., ... & O’Donoghue, A. C. (2022). The Role of the Fused Ring in Bicyclic Triazolium Organocatalysts: Kinetic, X-ray, and DFT Insights. The Journal of organic chemistry, 87(6), 4241-4253. https://doi.org/10.1021/acs.joc.1c03073
  47. Zobel, M., & Schäfer, H. J. (2016). Synthesis of fatty acid conjugates with phenols, carbohydrates, amines, and CH‐acidic compounds by Pd (0)‐catalyzed allylic substitution. European Journal of Lipid Science and Technology, 118(1), 80-92. https://doi.org/10.1002/ejlt.201500195


No citation yet. Please check again later.
How to Cite:
Shneine, J. K., Ahmad, S. M., & Zagheer, D. S. (2022). Recent Developments of Stetter Reaction: A Brief Review. Biomedicine and Chemical Sciences1(4), 234–240. https://doi.org/10.48112/bcs.v1i4.246 
 
Publisher’s Note:
International Research and Publishing Academy (iRAPA) stands neutral with regard to jurisdictional claims in the published maps and institutional affiliations.
 
Copyright:
© 2022 Biomedicine and Chemical Sciences published by International Research and Publishing Academy (iRAPA) - Pakistan Co-published by Al-Furat Al-Awsat Technical University - Iraq
 
This is an Open Access article published under the Creative Commons Attribution 4.0 International (CC BY 4.0) (https://creativecommons.org/licenses/by/4.0/)
Creative Commons Attribution (CC BY): lets others distribute and copy the article, to create extracts, abstracts, and other revised versions, adaptations or derivative works of or from an article (such as a translation), to include in a collective work (such as an anthology), to text or data mine the article, even for commercial purposes, as long as they credit the author(s), do not represent the author as endorsing their adaptation of the article, and do not modify the article in such a way as to damage the author's honour or reputation.